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Fig. 5. Variation of the normalized capacitance Cy of square inhomogeneous
coaxial line with sapphire dielectric as a function of edge-offset h, /b with §
as the parameter.
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Incremental Frequency Rule for Computing the
Q-Factor of a Shielded TE

. . omp
Dielectric Resonator

DARKO KAJFEZ, SENIOR MEMBER, IEEE

Abstract —The principle of Wheeler’s incremental inductance rule is
applied to the TE,,,, cylindrical resonator within a metal enclosure. The
procedure permits one to compute the conductor losses solely from the
decrease in resonant frequency when the metal walls are receded for one
skin depth.

1. INTRODUCTION

Computation of the Q-factor of metal cavities requires an
integration of the dissipated power over the entire metal surface
of the cavity. When a dielectric resonator is placed within the
metal enclosure, analytical expressions for the field distribution
become quite involved, and the numerical evaluation of Q-factor
frequently requires various simplifying assumptions in order to
render the solution possible [1], [2].

It is well known that the computation of conductor losses on
the TEM transmission lines may be considerably simplified by
using the “incremental inductance rule” developed by Wheeler
[3]. This rule replaces the detailed surface integration by a simple
computation of the increment in inductance per unit length when
all the metal walls are receded by 8 /2, where the skin depth & is
given by

o= T ¢y
Vo
In the above, f is the frequency of operation, ¢ is the conductiv-
ity, and p is the permeability of the metal walls.

It will be shown here that a similar trick can be applied also to
the TE,,, modes in rotationally symmetric hollow resonators,
but the increment which is to be calculated is now the increment
in the resonant frequency.

II. THERULE

The Q-factor due to conductor losses of any cavity consisting
of a rotationally symmetric metal enclosure, supporting the
TE ,p-type field, can be computed as follows:

fo
AR
Afo(8)

In the above, f, is the resonant frequency of the cavity, com-
puted for the case when the metal enclosure is made of a perfect
conductors. Afy(8) is the increment in the resonant frequency,
computed again for perfectly conducting walls which are now
moved inwards for one full skin depth 8, evaluated by (1).

(2)

III. PROOF

Fig. 1 depicts a cylindrical dielectric resonator within a metal
enclosure. When the enclosure is made of a perfect conductor, the
knowledge of the magnetic-field intensity as function of position
permits one to calculate the total stored magnetic energy W,,.
When the enclosure is made of a conductor with finite conductiv-
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Fig. 1. Rotationally symmetric metal cavity containing a dielectric resonator.

ity o, it is assumed that the tangential magnetic field on the metal
surface H,y(7) is the same as the one which existed previously on
the perfect conductor. 7 is the length along the circumference of
the metal as shown in Fig. 1. Furthermore, an assumption is
made that the local radius of curvature of the conducting surface
is much larger than the skin depth at the frequency of operation.
Then, the magnetic field distribution in the direction 72 normal to
the metal surface is given by the skin-effect law [4]

H‘r(T’n)=HTO(T)e‘(1+j)"/8' (3)

Due to the nonvanishing field within conducting walls, the total
magnetic energy is now increased by an amount W,,,, the mag-
netic energy within the conductor. For the mode with no azimuthal
variation, the magnetic energy increment is:

' ® B 2
W, = S|\H (1,n)|*27r(7) dndr. 4
wi= [ S ()2 () )
The integration in »n can be readily evaluated by using (3)
© )
'[ H7H1*dn = —2—|HT0(T)|2' (5)
0

The total integral of the exponentially decaying magnetic field is
the same as if the field was constant within one-half of the skin
depth 8, and vanishing beyond that distance. The increment of
the stored magnetic energy then becomes

W= 80, (5) =45 [ [Hro(DP2mr () dr. (6)
4 2/, 7
The surface resistivity due to skin effect is given by [4]
— )T
R,=y/ " @

The power dissipated in the metal wall of finite conductivity is
computed by integrating R |H,,|* over the entire surface [4]
Pi=R,[" Ho(r)P2mr(r) dr ®)

) 2 T=0
where 7, is the total length of the arc describing the rotationally
symmetric cavity in Fig. 1. It is seen that the integral appearing in
(8) is the same as the one in (6). Therefore, the incremental

magnetic energy is directly proportional to the dissipated power
as follows:

Pd=2wAWm(§) = wAW,(8).

AW,,(8/2) denotes the stored magnetic energy in the conductor,
such as given by (6). According to (5), this energy may be
obtained by integrating the squared surface magnetic-field inten-

©)
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sity within a layer of thickness 8/2. Since & is very small in
comparison with cavity dimensions, an integration over twice as
large a thickness will give AW, (8), which is twice the value of

AW,.(8/2).
The Q-factor due to conductor losses is defined as
wu/ﬂ?
Q.=—" (10)
Py
In view of (9)
W,
= 11
0= 55 ()

where W,, is the total energy stored in the cavity, and AW,,(8) is
the incremental magnetic energy obtained by receding the cavity
walls for one skin depth 8.

This brings us to the perturbation of cavity walls [5], [6]. A
movement of walls in the opposite direction, namely into the
cavity, would cause the resonant frequency f, to increase by an
amount Af,, given by [7]

AfO(a) - AI/Vm — AVVe
A o (12)

AW, is the change in electric energy when the walls are moved in
for 8. For the TE,,,, mode, the normal component of the electric
field on the cavity wall is zero, in addition to the tangential
component of the electric field being zero, anyway, on the metal
surface. From (12) and (11), then follows (2). Q.E.D.

IV. NUMERICAL EXAMPLE

The application of (2) is quite convenient when a computa-
tional procedure for evaluation of the resonant frequency of the
shielded resonator is available. The same computational proce-
dure can be used afterwards to find Q. due to resistive losses in
the cavity walls. The method will be illustrated on the example of
the TE,; dielectric resonator mounted on a dielectric substrate
above the metal plane, such as shown in Fig. 2. The resonant
frequency of the system can be found by a simple approximate
procedure [8] which uses only the elementary functions available
on pocket calculators. Suppose we want to evaluate the degrada-
tion of the unloaded Q-factor, due to the presence of losses in
the ground conductor.

In the procedure [8], the resonant frequency is not available
explicitly. The dimensions L, and D, the material properties e,
and €,, and the frequency f, must be given at the outset of the
computation, and the procedure gives L as a result. The vanables
of importance are thus related as follows:

L=L(L.f)- (13)

The change A f,(8) required in (2) cannot be computed explicitly,
so the solution must be found indirectly. For small changes of L,
and f;, the differential of (13) is

8L
+ a7 A (14)

Since the resonator length is constant, AL = 0, and the following
expression can be used to find. the desired derivative of frequency
with respect to L,:

AL—

Af,.

Af, aL/dL,
KL, 9L/af, (15)
The derivatives on the right-hand side may be evaluated numeri-

cally from (13), by making small increases (e.g., 0.1 percent) in
L, and in f, and finding the corresponding changes in L. Using
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Fig. 2. Dielectric resonator mounted-on a substrate.

v(15), Q. is then found from
_

Afo
3L, 5

Q.= (16)

In the example to be computed, the resonator is specified by
¢, =38, D=10.5 mm, L= 4.6 mm, and the dielectric substrate is
specified by €,=2.5 and L,=0.762 mm. Suppose .that the
unloaded Q, given by the manufacturer, is Q,= 5000. This
Q-factor takes into account the dielectric losses of the resonator
material only.

As a first step in the computatlon, the resonant frequency is
evaluated from (13) by iteration, the result being f, = 5.483 GHz.
Actually, the accuracy of method [8] is only about 2 percent, but
we have to keep a sufficient number of digits in order to evaluate
the derivatives from finite differences. If frequency is now in-
creased by 0.1 percent, the increment in. L is found to be
AL=0.01254 mm. If L, is next increased for 0.1 percent, the
corresponding increment is AL =.5925 pm. Thus, the required
derivative computed by (15) is

Afy

+— =—0.3429 GHz /mm,

AL 17)

The sign is negative,. because frequency decreases when L, is
increased. To apply (2), the length L, has to be shortened by &,
i.e., increased by — & so that the computed Q-factor comes out to
be positive. From (1), the skin depth for a copper conductor is
found to be & = 0.8913 pm, which then gives Q, =17938. There-
fore, due to. the contribution of conductor losses in the ground
plane, the overall unloaded Q of the resonator in Fig. 2 will drop
from 5000 to (179381450007 1)" ! =3910.

V. COROLLARIES

i) The derivation of (2) is valid only if the stored electric energy
is stationary when the walls are receded for distance 8. Therefore,
the field distribution must be of such a nature that the electric
field normal to the shielding walls is zero. None of the HEM
modes possess this property.

i) The metal enclosure must possess the rotational symmetry.
A box shaped as a parallelepiped would create normal compo-
nents of the electric field on the walls, thus violating the assump-
tion AW, = 0.

iii) Equation (2) is not an approximation, but it represents an
cxact relationship, as long as the assumptions utilized in the
proof remain valid.

iv) The presence of the dielectric core inside the resonator is
not required for the application of the incremental frequency
rule. This may be seen by deriving an analytical expression for
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the Q-factor of a TE,,, hollow.cylindrical resonator by evaluat-
ing the differential Af in (2), instead of performing the conven-
tional integration of the dissipated power along the walls. The
result is identical with the published Q -factor value for hollow
cylindrical resonator [9].

v) Since the quantities appeanng in (2) can. be observed by an
experiment, the incremental frequency rulé may be used in mea-
surements. '

vi) A partial Q- -factor due to only one of the metal walls may
be studied by receding only that wall and leaving the other walls
intact. As an example, it is possible to analyze the effect of the
metal tuning plunger on the Q-factor of the cavity, if the plunger
is inserted into a cavity in such a way that the rotational
symmetry is preserved.
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Loss_ Measurements of Nonradiative Dielectric
~ Waveguide

TSUKASA YONEYAMA, MEMBER, IEEE, NORIO TOZAWA,
AND SHIGEO NISHIDA, SENIOR MEMBER, IEEE

Abstract —A technique has been developed for precisely measuring the
attenuation constant of the nonradiative dielectric waveguide (NRD-guide)
at 50 GHz. The novelty of the present technique lies in incorporating the
NRD-guide directional coupler into the measurement system and taking
advantage of the total reflection of waves at the truncated end of the
dielectric strip to facilitate the construction of the setup and to attain a
high degree of accuracy in measurements. Measured attenuation constants
were found to be about 13 dB/m for a polystyrene NRD-guide and 4
dB/m for a Teflon NRD-guide. These values indicate that the NRD-guide
can be of practical use as a waveguide for millimeter-wave integrated
circuits because of its low-loss nature as well as its radiation suppression
capability. Calculation is also carried out in order to support measure-
ments.
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